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In this document, we will give additional details and experimental results

of the corresponding sections in the main paper to support the method we

proposed.

1. Network Architectures

Following the backbone designs in [1] for image-to-image translation task,5

let c7s1-k denotes a 7×7 convolution block with k filters and stride 1. dk means

a 4×4 convolution block with k filters and stride 2. Rk denotes a residual block

that contains two 3×3 convolution blocks with k filters. The last layer c1s1-8 in

the style encoder is a 1× 1 convolution block with 8 filters and stride 1. There-

fore, we obtain 8 dimensions of style codes. Similarly, the mean and diagonal10

elements of the covariance matrix for each Gaussian are also parameterized with

8 dimensions to be optimized with the generator simultaneously. uk denotes a

2× nearest-neighbor upsampling layer followed by a 5×5 convolution block with

k filters and stride 1. GAP denotes a global average pooling layer. Instance Nor-

malization (IN) and Adaptive Instance Normalization (AdaIN) are adopted to15

the content encoder branch and decoder respectively. No normalization is used
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Figure 1: Typical samples of hierarchical data on ImageNet. Images within a purple rectan-

gular box are some instances of a leaf-level category. Categories within a green rectangular

box belong to one common super-category. The super-categories within a red rectangular box

share one common ancestor.

in the style encoder branch. Use ReLU activations in the encoder-decoder and

Leaky ReLU with slope 0.2 in the discriminator and classifier. Multi-scale dis-

criminators with 3 scales and objective of LSGAN [2] are used to ensure both

realistic details and global structure preserved. The last layer of the decoder is20

equipped with a tanh activations to normalize the values of generated images

to the range of [−1, 1]. In the following, we give detailed architectures of each

module.

Content encoder: c7s1-64, d128, d256, R256, R256, R256

Style encoder: c7s1-64, d128, d256, d256, d256, GAP, c1s1-825

Decoder: R256, R256, R256, u128, u64, c7s1-3

Discriminator & Classifier: d64, d128, d256, d512

2. Hierarchical Data Construction

In this section, Fig. 1, Fig. 2 and Fig. 3 provide leaf-level examples used

in the main paper for better understanding the nested relationships among30

categories in different hierarchy levels. Take the ImageNet animal for example,
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Figure 2: Typical samples of hierarchical data on ShapeNet. Images within a purple rectan-

gular box are some instances of a leaf-level category. Categories within a green rectangular

box belong to one common super-category. The super-categories within a red rectangular box

share one common ancestor.
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Figure 3: Typical samples of hierarchical data on CelebA. Images within a purple rectangular

box are some instances of a leaf-level category. Categories within a green rectangular box

belong to one common super-category. The super-categories within a red rectangular box

share one common ancestor.
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Figure 4: 2D UMAP visualization of learned Gaussian distributions of domains in different

hierarchy levels on ShapeNet for (a) Full HIT and (b) HIT w/o Lnest. For each domain, 1, 000

points are sampled and fitted for a Gaussian ellipse.

the root category animal has three children, i.e. house cat, dog and big cat. For

each of the three super domains, it includes four finer-grained children. Within

each leaf-level category, samples mainly contain intra-class variations caused by

shapes, colors, poses, etc.35

3. More Details of User study

In this section, we introduce more details about the user study settings in our

experiments. The 30 users are selected from both undergraduate and postgrad-

uate students. The distribution of them is half-and-half. The undergraduate
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students are mainly majored in computer science and technology, and the post-40

graduate ones are learning in computer applications. On each test set, we first

randomly select 100 images as the source. Second, for each source image, a dif-

ferent domain is randomly chosen as the translation target. Third, for compared

multi-modal methods, we randomly choose one translated result. To make it

stable, such random steps are conducted 3 times, resulting in 300 source images45

and 300 translated results for each method. Besides, for each participant user,

the results of the second and third steps are different by using different random

seeds.

During the user study, we show users the source image, target domain name,

and translated images of all compared methods (methods order is shuffled in50

each case). Users are asked to choose the best one he/she regards with unlim-

ited time, based on the three tips shown on the annotation tool: 1). Results

should be distinguished as the target domain easily (most important) 2). Re-

sults should perceptually have high image quality, i.e. looks as real as possible.

3). Results should share some common information with the sources, such as55

pose, background (i.e. domain irrelevant).

4. Additional Experimental Results

In this part, we show additional experimental results which are complemen-

tary to our main paper. Fig. 4 shows a 2D visualization of learned Gaussians of

some categories at different hierarchy levels on the ShapeNet dataset. Similar60

conclusions with the ones in the main paper can be drawn, we do not repeat

that here.

4.1. Facial Attributes Transfer

In this subsection, we extend our HIT to the task of facial attributes transfer

on CelebA [3] dataset. CelebA provides more than 200K face images with 4065

attribute annotations. To make a comparison with existing attribute editing

methods, we define a hierarchy by imitating the category hierarchy. Specifi-

cally, all faces are first clustered into male and female, and further classified
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Figure 5: Qualitative comparison on CelebA. The inputs are translated to their reversed

value for gender and age attributes, and to black hair color (the attributes shown on the left

are the raw values of inputs, and abbreviations are: Female(F), Male(M), Young(Y), Old(O),

Brown (Br), Black (Bl) and Golden (G) hair.). StarGAN learns one-to-one mapping. MUNIT,

DMIT, and our HIT can generate multi-modal results (2 outputs for each input are randomly

sampled from distributions). StarGAN and DMIT only change the target attribute, leaving

others unchanged by modifying that attribute dimension of the one-hot vector. MUNIT

models one attribute as a domain with other attributes as intra-domain variations and thus

may reach the target domain with other attributes changed. As for HIT, styles of each target

attribute can be sampled from any domain node containing that attribute in the hierarchy,

e.g. styles of the old attribute can be sampled from 6 different combined domains (i.e. old

× [male or female] × [brown, black or golden] hair colors), which can be controlled by users

(i.e. one can sample from the distribution node with/without changing other raw attribute

values). Best viewed in colors and zoom-in.
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according to the age and hair color in the next two levels, typical examples of

such hierarchy are shown in the supplementary materials. Note that the or-70

der of attributes selection is not unique, one can define other data split orders.

On this fine-grained translation task, the entropy loss defined in Eqn.(4) of the

main paper is dropped as we find it may do harm to the preserving of face

identity. MUNIT is trained on domain pairs of male↔female, young↔old and

black hair↔golden hair on CelebA.75

Fig. 5 shows qualitative results on CelebA. It is observed that StarGAN

(FID:21.50) and DMIT (FID:28.20) achieve outstanding image quality on such

fine-grained translations among attribute domains, while MUNIT (FID:88.19)

is not satisfactory for this. The reasons may be that using only the adversarial

learning (MUNIT) to find fine-grained attribute differences between domains80

is not stable while additional multi-domain classifier (StarGAN, DMIT, and

HIT) is good at such objective. In terms of image quality, our HIT (FID:38.71)

performs comparably with StarGAN and DMIT. Considering that StarGAN is

elaborately designed for this task, the results of a simple extension of our HIT are

overall acceptable. Besides, our HIT considers both multi-modal distributions85

fitting and multi-domain classification by splitting attributes in a hierarchy, one

can control the degree of attributes change by sampling from domains containing

the target attribute at different hierarchy levels, e.g. change a female to male by

sampling from domain of male, old male or old male with black hair, the progress

of which is as simple as changing the one-hot attribute vector in StarGAN and90

DMIT.

In Fig. 6(a), we further study the smoothness of learned distributions. It is

observed one can conduct smooth translation via linear interpolations between

styles from different attribute domains. Besides, our method can provide style

transfer (also called example guided translation) as done in [1] and [4], i.e. use95

the styles of referenced real images instead of sampling them from distributions.

Fig. 6(b) shows some results. We can find that the semantics of gender, age,

and hair colors in the source images are correctly transferred to the specified

styles of the target images.
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Figure 6: Translations by (a) interpolations of sampled styles from different domain distribu-

tions and (b) style transfer between real images. In (a), inputs are translated to the target

styles which are the interpolations between two sampled styles, e.g. in the fourth case style 1

means old female with golden hair and style 2 denotes young male with black hair, and the

interpolations between them are mixed attributes of style 1 and 2. In (b), images in the left-

most column provide content parts (encoding pose, identity, background, etc.) and the ones

in the top row bring style parts (encoding gender, age, and hair colors) for image generation,

e.g. in the first case the hair color and gender of the source image (young female with golden

hair) is transferred to the style of the first target image (young male with black hair).

4.2. Failure Case Analysis100

The assumption of single Gaussian for all category domains in the common

space has some limits, the sampling of distributions at high levels may fail. As

shown in Fig. 7, it is found that the failure cases (highlighted by red bounding

boxes) present blurred and miss some local details. On one hand, though Gaus-

sian distribution prior is a good approximation for many real data, it may not105

be completely qualified when the scale of available training data is not enough

to capture the full data manifold with large intra-domain variations, such as the

used hierarchical data of ImageNet and ShapeNet in this paper. On the other

hand, the parent distributions should be better modeled by a mixture of Gaus-

sians given multiple single Gaussians of its children. As illustrated in Fig. 8,110

this issue would lead to sparse sampling around the center of parent distribution
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Figure 7: Qualitative generation results of multiple random style samplings. For each input,

15 images are generated by randomly sampling in a particular target super-domain (House

cat, dog, or big cat). Images with poor quality are highlighted by red rectangular bounding

boxes. Best viewed in colors.

and thus poor generation quality.

To verify this, we conduct experiments to compare the image quality of

translations of different distribution modeling schemes on the ImageNet dataset.

Specifically, the parent distribution of the house cat, dog, and big cat is mod-115

eled by the Gaussian mixture model (GMM) fitted with the EM algorithm, the

learned single Gaussian model (SMM) of our HIT method, and the offline-fitted

SMM as Fig. 8, respectively. By sampling from each of the three distributions,

the input images are translated to the parent category. The FID results of such

three schemes are 49.80, 56.44, and 64.92, respectively. We can infer that the120

GMM might be more reasonable than the SMM for the hierarchical distribution

space modeling. To address this issue, we made efforts to exploit the idea of the

mixture of Gaussians to train our HIT, but found that it is hard to compute

the KL divergence between two mixture of Gaussians which does not have an

analytical solution. Besides, the re-parameterize trick for distribution sampling125

during SGD optimization can not be transferred to the case of the mixture of

Gaussians. A more principled assumption to realize the nested relationships

among parent-children distributions is a promising direction for our future re-

search.
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Figure 8: 2D illustration of a possible situation using the single Gaussian assumption for

nested modeling. Given single Gaussians of two children, sparse sampling would occur around

the fitted single Gaussian distribution center of the parent.
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